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ABSTRACT

Wearable sensors provide abundant physiological time series observations, yet
the resolution at which we should extract features for downstream tasks remain
unclear. We hypothesize that temporal resolution is a fundamental axis of rep-
resentation learning, with different clinical and behavioral outcomes relying on
features at distinct scales. To test this resolution hypothesis, we introduce HHMAE
(Hierarchical Masked Autoencoder), a self-supervised framework that combines
masked autoencoding with a hierarchical convolutional encoder—decoder. HIMAE
produces multi-resolution embeddings across its intermediate layers that enable
systematic evaluation of which temporal scales carry predictive signal, transform-
ing resolution from a hyperparameter into a probe for interpretability. Across
classification and generative benchmarks, HHIMAE consistently outperforms state-
of-the-art foundation models that collapse scale, while being orders of magnitude
smaller. Due to the convolution based design choices behind HIMAE, the model
is also compact enough to run entirely on-device, achieving sub-millisecond in-
ference on smartwatch-class CPUs for true edge inference. Together, these contri-
butions position HIMAE as both an efficient self supervised learning method and
a discovery tool for understanding how time resolution contributes to downstream
task alignment.

1 INTRODUCTION

Wearable sensors have emerged as a primary modality for continuous health monitoring, provid-
ing access to rich physiological and behavioral signals in free-living settings (Erturk et al.l [2025).
Despite their ubiquity, the utility of wearable signals for machine learning in healthcare remains
poorly understood. Unlike images (Dosovitskiy et al., 2021} [Simonyan et al.| |2014; [Zhou et al.,
20155 |Petsiuk et al., [2018)) or text (Brown et al., [2020; [L1 et al.l 2016; |Sundararajan et al., 2017;
Arras et all [2017), physiological time series rarely admit obvious visual cues that map cleanly to
clinical outcomes, leaving open fundamental questions about which features carry predictive value.
A particularly unresolved issue concerns temporal resolution: should models operate at a single uni-
versal resolution, or do different health outcomes depend on resolution-specific structure? Clinically
actionable events can arise on second-level timescales, requiring representations that both capture
fine-grained temporal patterns and support real-time inference under the computational constraints
of wearable devices. We hypothesize that resolution is not a nuisance parameter but a fundamental
axis of physiological representation learning. We refer to this as the resolution hypothesis, which
posits that temporal granularity governs predictive performance in clinical and behavioral tasks.
In this framing, “resolution” denotes the effective temporal context over which representations are
formed—from fine-scale waveform morphology to coarse-scale dynamics spanning the whole se-
quence.
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Figure 1: HIMAE pre-training and evaluation pipeline. (1) Physiological sequences are split into
temporal patches. (2) Selected patches are masked randomly or contiguously. (3) A U-Net-style
CNN encoder—decoder reconstructs missing values, with loss applied only to masked regions. (4)
Multi-resolution embeddings feed linear probes for classification and regression benchmarking. (5)
Three categorized task-lists are evaluated.

From an algorithmic perspective, much of the field defaults to transformer-based architec-
tures (Vaswani et al} 2017), implicitly assuming that flexibility and capacity outweigh inductive
bias. Yet wearable signals, while long in sequence length, are often generated by a few latent pro-
cesses driven by biological mechanisms and captured through only a handful of sensor modalities.
In this sense they are low-dimensional and highly structured. This raises the possibility that trans-
formers may not only overfit but also obscure resolution-specific structure, rather than expose it. By
contrast, hierarchical convolutional biases offer a natural mechanism for aligning architectures with
the resolution hypothesis, capturing both local detail and long-range dependencies in a principled
way. This motivates a re-examination of architectural design choices for self-supervised learning
(SSL) on raw physiological time series.

In this work, we address these challenges by introducing HiMAE (Hierarchical Masked Autoen-
coder), a self-supervised pretraining framework for wearable time series that directly operational-
izes the resolution hypothesis (Figure [I). HIMAE combines the masked autoencoding paradigm
with 1D physiological signals by coupling patch-masking objectives (Wang et al.| 2023)) with a
U-Net—inspired encoder—decoder (Ronneberger et al., [2015)). Crucially, HIMAE produces multi-
resolution embeddings, with each level of the hierarchy corresponding to a distinct temporal gran-
ularity. This design enables systematic interrogation of which resolutions carry predictive signal,
while simultaneously yielding lightweight, efficient representations. Beyond its architectural advan-
tages, HIMAE allows us to benchmark the resolution hypothesis across 14 classification. Our results
reveal resolution-specific structure in wearable signals that is not readily identifiable by human ex-
perts, offering new insights into both representation learning and the interpretability of physiological
time series in the time domain.

2 RELATED WORK

Self-Supervised Pretraining Objectives for Wearable Signals Wearable devices equipped with
photoplethysmography (PPG), electrocardiography (ECG), and accelerometry generate long, multi-
channel time series encoding diverse physiological and behavioral phenomena, including cardiovas-
cular dynamics (Castaneda et al., [2018), activity patterns (Yuan et al.,|2024; | Xu et al.| [2025), sleep
cycles (Li et al.l 2021} |Thapa et al., [2024; Logacjov et al., |2025)), and other latent processes. These
data streams are abundant, and predominantly unlabeled, making them well suited for large-scale
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self-supervised learning (Kaplan et al.|[2020; Bommasani et al., 2021} Zhou et al.}[2024; [Liang et al.,
2024]).

SSL has become the dominant paradigm for wearable time-series representation learning, given the
scarcity of labeled data and the ubiquity of unlabeled signals in free-living settings (Lee & Aka-
matsu, 2025). Among SSL strategies, masked autoencoding has emerged as a central approach,
inspired by its success in vision (He et al., [2022; [Vaid et al. 2023)) and language modeling (De-
vlin et al., [2019). The method randomly occludes patches of the signal and tasks the model with
reconstructing them, encouraging representations that capture latent physiological structure and tem-
poral regularities (Zhang et al.| 2022aj |[Kong et al [2023)). Recent large-scale efforts, most notably
Google’s LSM series (Narayanswamy et al., 2024} |Xu et al., 2025), rely heavily on masked au-
toencoding, establishing it as a pretraining standard for multi-modal wearable datasets. Yet despite
its effectiveness for local pattern recovery, vanilla masked autoencoding often struggles to capture
multi-resolution features unless coupled with explicitly hierarchical architectures.

In parallel, contrastive learning enforces invariance by pulling semantically similar samples together
in latent space while pushing dissimilar ones apart (Schmitt & Kuljanin, 2008} |Jaiswal et al., [2020)).
The central challenge for wearables is defining positive and negative pairs without labels. One so-
lution is participant-level contrastive training, where samples from the same individual are positives
and samples from different individuals are negatives, an approach adopted in Apple’s ECG and
PPG foundation models (Abbaspourazad et al., [2023) and closely related to the SimCLR frame-
work (Chen et al 2020b). Other domain-specific innovations define pairs through physiologi-
cal priors: PaPaGei leverages PPG morphology (Pillai et al., 2024), while SleepFM extends the
paradigm across EEG, ECG, and EMG to enforce cross-modal consistency (Thapa et al.| 2024)).
Additional embedding-level regularizers, such as differential entropy constraints (Jing et al.| 2021}
Abbaspourazad et al.| [2023), further enrich learned representations. However, contrastive methods
are highly sensitive to augmentation heuristics (which are rarely physilogically meaningful), com-
putationally intensive, and limited in interpretability, providing little insight into which temporal
structures are preserved.

HiMAE departs from both flat masked and contrastive approaches in two ways. First, instead of
relying on a single-scale reconstruction or augmentation heuristics, HIMAE couples masked autoen-
coding with a hierarchical encoder—decoder that integrates information across resolutions, treating
temporal scale as an explicit dimension of representation. Second, by extracting embeddings at
multiple scales and probing them independently, HHIMAE transforms SSL from a pretraining mech-
anism into a discovery tool: it directly tests which temporal resolutions carry predictive signal for
downstream tasks. In doing so, HIMAE preserves the efficiency of masked autoencoding while
introducing interpretability absent in contrastive or flat masked objectives.

Multi-scale Learning The emphasis on resolution awareness connects naturally to multi-scale
learning, where modeling temporal signals across multiple granularities has emerged as a power-
ful inductive bias. In vision, multi-scale architectures such as pyramidal CNNs and hierarchical
attention enable models to integrate fine-scale edges with coarse semantic structures, substantially
improving recognition and generation in 2D (Wang et al.,|2016; |Yang et al., 20165 [Liu et al., 2021a;
Kusupati et al., 2024; |Liu et al., 2024) and 3D (He et al.| |2017; |Ghadai et al., 2019; |Zhang et al.,
2022b).

In time series, multi-scale methods are fewer but increasingly influential. N-HiTS (Challu et al.,
2022) improves long-horizon forecasting by allocating capacity across frequencies via hierarchical
interpolation. Pyraformer (Liu et al., 2022) leverages pyramidal attention to capture dependencies
over a tree of scales, while Scaleformer (Shabani et al., [2023) introduces iterative refinement across
resolutions. Pathformer (Chen et al.l 2024)) further adapts pathways dynamically to match input-
specific temporal dynamics.

Prior multi-scale methods typically rely on fixed hierarchies or task-specific refinement stages (e.g.,
for forecasting), which constrains their generality. While HIMAE also inherits inductive biases from
convolutional design choices (e.g., step size, padding, kernel width), these parameters define recep-
tive fields rather than dictate which scales are salient. By coupling self-supervised reconstruction
with these fields, HIMAE induces a hierarchy of temporal embeddings that can be probed indepen-
dently.
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3 METHODS

Hierarchical Masked Autoencoders (HIMAE) HiMAE combines masked autoencoding (Baldi,
2012;He et al.|[2022) with 1-D physiological time series by coupling a patch-masking objective with
a U-Net-style convolutional encoder—decoder (Ronneberger et al., 2015). Given an input sequence
r € RE*L, we partition it into N = L/P non-overlapping patches of length P. A binary mask
m € 0,1" is sampled from a Bernoulli distribution with parameter r, indicating the masking ratio.
Masked indices are selected uniformly at random without replacement, expanded to match temporal
resolution as m’/ € 0,17, and applied to the sequence, yielding & = z ® (1 — m’). This masking
procedure removes substantial context, forcing the model to infer higher-order dependencies. In
addition to random masking, we also employ contiguous masking, in which adjacent patches are
removed to mimic sensor dropout similar to recent protocols showing benefits (Xu et al.,|2025). Both
regimes are interleaved during pretraining to promote robustness across reconstruction settings.

Architecture The encoder fy is a hierarchical 1D CNN composed of residual convolutional blocks
with stride-2 convolutions that downsample the temporal resolution by half at each stage, expanding
the receptive field so that deeper layers capture long-range dependencies while shallow layers retain
local detail. Each residual block consists of two convolutions with kernel size 5, batch normaliza-
tion (loffe & Szegedy) 2015)), and GELU activations (Hendrycks & Gimpel, |2023), along with a
projection shortcut when input and output dimensions differ. The decoder g4 mirrors this structure
with transposed convolutions for upsampling and incorporates skip connections from encoder lay-
ers, concatenating intermediate features to restore fine-grained temporal structure. All convolutions
are standard 1D operations defined over temporal windows, and striding handles subsampling di-
rectly. Intermediate activations use GELU, while the final layer applies a tanh nonlinearity so that
outputs € R“*L are bounded in [—1, 1], matching the normalized input range.

We deliberately adopt a convolutional U-Net backbone rather than a transformer-based encoder for
two reasons. First, physiological signals exhibit strong local dependencies governed by morphol-
ogy (e.g., PPG waveform shape, ECG peaks), which are naturally modeled by finite receptive fields.
Convolutions (O’Shea & Nash| 2015)) encode this locality directly, whereas transformers must simu-
late it through restricted attention, often at higher parameter cost. Second, multi-resolution structure
is intrinsic to physiology (e.g., heartbeats unfold over milliseconds, rhythms span seconds). A hi-
erarchical CNN with skip connections provides an architectural bias toward such nested timescales,
aligning directly with the resolution hypothesis and being orders of magnitude smaller than other
proposed foundation models in this space (See Figure 2] for comparison). In contrast, transformers
emphasize global mixing, which may obscure resolution-specific structure while consuming sub-
stantially more compute (Table [6). This rationale motivates HIMAE’s design as not only efficient
but also inductively aligned with the temporal statistics of wearable signals.

Resolution Probes Multi-resolution em-
beddings extracted from different levels
of the hierarchy are probed independently,
with distinct linear classifiers trained per MUlti-modal o Q

resolution (Alain & Bengio) [2018). This LsM-small LSM-Base
design enables us to systematically evalu- ™ aworn

ate which temporal granularity carries pre- HiAE-small T

dictive signal for downstream tasks, rather ;. qa o4 @ )

than collapsing embeddings into a single HMAE-Base  PaPaGel-S

latent space. Finally, choices of patch o o

length P and kernel size were guided by T T )
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yield the best balance between local fi- Figure 2: HIMAE is lightweight

delity and receptive field expansion when all other hyperparameters were fixed.

Wearable Foundation Models

Training minimizes a masked reconstruction loss restricted to occluded regions: Lysg (6, ¢) =
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%, where m’ ensures that gradients are only computed on masked segments. This objec-
t=1 t

tive estimates p(z |2 ), with M and O denoting masked and observed indices, preventing trivial

copying of visible inputs and promoting temporally coherent, multi-scale representations.
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Effective Global Context via Receptive Field Expansion While Transformers achieve global
dependency modeling via O(L?) self-attention, the U-Net architecture in HIMAE approximates this
behavior at O(L) complexity through hierarchical spatial contraction. In a D-layer encoder, the ef-
fective receptive field (ERF) at layer d grows exponentially as Ry = Rg—1+(k—1) ~H?;11 sS4, where
k is the kernel size and s is the stride. By the bottleneck, the ERF encompasses a significant por-
tion of the input sequence L, allowing the model to capture “global” context without the quadratic
memory overhead of an attention matrix. This hierarchical aggregation acts as a multi-scale proxy
for global attention: deep layers integrate coarse, long-range context, while skip connections inject
high-resolution local features back into the decoder. Consequently, HIMAE simulates the commu-
nicative benefits of attention through a series of local-to-global inductive biases, achieving compet-
itive representation power at a fraction of the FLOPs required by vanilla ViT or Transformer-based
autoencoders.

Pretraining and Evaluation Protocol PPG Sequences were sampled at f; = 100 Hz over fixed
windows of " = 10s (L = 1000 timesteps). 10 second windows were selected due to clinically
actionable events occurring in these time scales (ECG is collected at 10s intervals in clinical settings
(Shuai et al., 2016; [Elgendi, |2012)) and due to our interest in real-time monitoring on edge devices.
Each signal was divided into non-overlapping patches of length P = 5 (200 patches total), and a
masking ratio 7 = 0.8 was applied with patterns resampled per sequence and iteration to mitigate
overfitting (we empirically tested this masking ratio in Appendix Section [F.1| with similar observa-
tions made in (Narayanswamy et al., [2024)). The encoder architecture employed channel widths
[16,32, 64, 128], mirrored in the decoder. Optimization was performed with AdamW (Loshchilov
& Hutter, 2019) (Ir = 103, weight decay = 10~?) using a warmup—cosine schedule (10% linear
warmup steps followed by cosine decay). Models trained up to 100k steps with batch size 2048
and early stopping triggered after 3 epochs without improvement similar to the protocols found in
(Narayanswamy et al.). Data splits followed a 90/10 (train/validation) protocol across subjects, en-
suring no identity overlap between pretraining and validation. Pretraining converged within 12 hours
when distributing training across 4 Tesla T4 GPUs using PyTorch lightning (Paszke et al., [2019).

Pretraining datasets. We construct our pretraining corpus from approximately 80,000 hours of
wearable green PPG signals, drawn from seven large-scale free world studies conducted at Samsung
Research. These datasets include recordings from 47,644 participants across seven distinct wearable
devices, capturing broad demographic, behavioral, and hardware variability in a noisy environment
(See Appendix Section [B]for ethics considerations). Although our modeling framework is modality-
agnostic and can extend to other physiological signals such as electrocardiograms (see Appendix
[F2)), we focus here on PPG due to its prevalence and the scale of available data (we lack the same
order of magnitude of ECG compared to PPG because ECG is not passively collected). To ensure
reliability, we apply a standardized preprocessing pipeline that retains only high-quality segments,
filtering by a Signal Quality Index (SQI). The retained signals are further refined using a bandpass
filter of 0.5-8 Hz (Christiano & Fitzgerald, 2003)), consistent across all pretraining and evaluation
studies, to isolate physiologically relevant dynamics. Finally, signals are normalized to the range
[—1, 1] to match the output range of the tanh activation function used in our models.

4 EXPERIMENTAL DESIGN

We follow the evaluation protocol of Narayanswamy et al.|(2024) and extend it into a unified bench-
mark suite spanning generative, and classification, along with ablations to quantify how key archi-
tectural components interact with scaling. Across all experiments, our goal is not only to assess
HiMAE’s efficiency and transferability, but also to test the resolution hypothesis: whether predictive
signal concentrates at specific levels of the hierarchical embeddings. Further analysis and results are
displayed in full in Appendix Section[F]

Model scaling and generative reconstruction. We first study HIMAE's scaling properties by mea-
suring how reconstruction performance varies as a function of dataset size, number of participants,
model capacity, and training compute capacity (batch size). For each axis, we systematically sub-
sample or expand the relevant resource while holding others fixed, enabling us to isolate its contri-
bution to representation quality. Scaling is assessed through mean squared error on masked recon-
struction on a held out validation set, which provides a direct measure of how model capacity and
data availability govern loss reduction. We also squeeze in ablations in this experiment to assess
how removing skip connections, and removing the hierarchal design affect scaling.
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Figure 3: HiMAE exhibits superior scaling across axes. Mean squared error decreases most
rapidly for HIMAE as data, participants, model size, and compute scale on a held out validation
set. Ablations without skip connections confirm that both the hierarchical design and skip pathways
are helpful for generative performance. Grey lines indicate multiple runs whereas colored lines are
average performance.

To complement this aggregate view, we also evaluate generative performance under three increas-
ingly challenging reconstruction regimes defined in the LSM papers (Narayanswamy et al.; Xu et al.,
2025): (1) random imputation, where patches are masked at random uniformly; (ii) temporal inter-
polation, where contiguous spans are removed to simulate sensor dropout; and (iii) temporal ex-
trapolation, where future spans are occluded and predictions must rely solely on past context. We
compute the mean squared error (MSE) for these evaluations.

Classification To assess downstream transferability and adaptability, we benchmark HIMAE on 12
binary classification tasks drawn from labeled datasets fully disjoint from our pretraining sources.
We organize these into three groups: cardiovascular outcomes, sleep staging, and abnormal labo-
ratory prediction. Cardiovascular outcomes, provide the most established benchmarks, with well-
documented links between PPG and clinical endpoints (Shabaan et al., 2020). These include hyper-
tension detection, and arrhythmia-related events such as Premature Ventricular Contractions (PVCs)
detections, typically identified via electrocardiograms (ECGs). Sleep staging is another task we in-
clude which is of high interest, given the demand for wearables to track fine-grained sleep states
despite the temporal and physiological complexity of the task (Imtiaz, |2021; Thapa et al.| 2024;
Birrer et al.| |2024)). Laboratory predictions, on the other hand, serves as a discovery setting, testing
whether PPG contains sufficient biomarker information to separate abnormal from healthy labs—an
open question compared to patient-record benchmarks where such signals are more explicit (Kolo
et al.l 2024; McDermott et al., 2025)). Together, these canonical and exploratory tasks form a spec-
trum that enables a comprehensive evaluation of representation quality across diverse digital health
applications. All tasks are described in greater detail in Appendix Section D}

We evaluate HIMAE against two complementary classes of baselines. The first comprises estab-
lished self-supervised representation learning methods for time series, including SimCLR (Chen
et al., [2020b), DINO (Caron et al.,[2021), Masked Siamese Networks (MSN) (Assran et al.| [2022)),
and a ViT-based 1D masked autoencoder that follows the LSM training protocol of (Narayanswamy
et al.). The second class consists of state-of-the-art time-series and wearable foundation models.
This includes PaPaGei, a leading foundation model for PPG (Pillai et al. [2024), evaluated both
using its publicly released Bell Labs checkpoint (PaPaGei—BLf_-] and a variant retrained on our pre-
training corpus (PaPaGei-SRA). We additionally benchmark against Chronos (Ansari et al.,[2024), a
large-scale time-series foundation model, and the hierarchical Swin Transformer (Liu et al., 2021b),
configured to match the LSM setting for controlled comparison. Further implementation details for
all baselines are provided in Appendix [E] All models are evaluated using a standard linear probing
protocol, in which the pretrained encoder is frozen and a linear classifier is trained on top of the
learned representations. Performance is reported using AUROC as the primary metric of discrimi-
native ability. For every architecture, we expose the full sequence of embeddings along the temporal
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Figure 4: Performance on generative benchmarks. Mean squared error and rfor random imputa-
tion, temporal interpolation, and temporal extrapolation at varying missingness levels. Bold outline
indicates best performing model.

dimension, rather than collapsing representations to a single summary token, ensuring that down-
stream probes retain access to resolution-specific information. This evaluation protocol allows us to
assess whether pretraining yields representations that are both discriminative and transferable across
tasks.

Resolution Hypothesis HHIMAE produces embeddings at multiple temporal scales, and we probe
each scale independently with linear classifiers. This allows us to test whether predictive information
is concentrated at fine, intermediate, or coarse resolutions depending on the clinical endpoint. In this
way, the classification tasks serve not only as benchmarks for transfer learning, but also as controlled
tests of the resolution hypothesis (Receptive field lengths are described in Section[C.I).

5 RESULTS

5.1 SCALING AND GENERATIVE BENCHMARK

Scaling: We first examine the scaling behavior in Figure [3of HIMAE relative to baselines across
data, participants, model parameters, and compute capacity (batch size). The overall scaling trends
follow conventional expectations, error decreases monotonically with additional data, participants,
or compute. However, scaling with model parameters reveals a interesting insight. HIMAE achieves
substantially lower loss at smaller parameter capacities, while transformers only begin to close the
gap once scaled to orders of magnitude more parameters (we chose transformer parameter count
based on LSM’s original paper (Narayanswamy et al.| 2024)). This difference reflects an inductive
bias. Transformer which assume global receptive fields, appear to require considerably larger model
capacity before capturing the local dynamics of the data. In contrast, HHIMAE’s hierarchical con-
volutional structure exploits spatial and temporal locality efficiently, yielding superior performance
at modest scales. This observation reinforces the importance of architectural priors in low-capacity
regimes.

Generative: Turning to generative benchmarks, HIMAE consistently outperforms all baselines
across random imputation, temporal interpolation, and temporal extrapolation tasks (Table ). In
terms of mean squared error, HIMAE achieves the lowest reconstruction error in every setting, in-
cluding cases with heavy missingness. This advantage persists when evaluated with R?, where the
mean-fill baseline serves as the reference. By achieving positive R? scores even in challenging
extrapolation scenarios, HIMAE demonstrates reconstruction ability beyond naive heuristics (e.g.,
mean fill, nearest neighbor, or linear interpolation). Together, these results establish HIMAE as
a strong generative model for missing data problems, with advantages that persist across scaling
regimes and input corruption patterns.
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Table 1: Linear probing classification performance comparison against baselines on different tasks.
AUROC is reported in percent with 95% confidence intervals. The best performance is bold, the
second best model is underscored. * denotes p < 0.05, ** denotes p < 0.01 from a two-sided z-test
comparing HIMAE with the second-best model.

M Cardiovascular Conditions Abnormal Blood Labs Sleep Staging
odel #param (M)
Hyptn (lab)  Hyptn (free-living) PVC AIC  Hemoglobin  Platelets Sodium  Potassium  Wake Light Deep REM

SimCLR 50 53.4 (+36) 53.7 (x40 51.7 59 609 ss) 508 (4.6) 44.4 (62 58.6 (48 670 (49 56.6 (43 527 &5 67.0 x40 51057
DINO 6.5 S1.7 (x43) 52.2 (£34) 47.0 (k48)  58.9x39)  49.6 (+32) 42.9 (@54 56.9 (£33 64538 55336 55244 688 (£33  46.0 (+£6.0)
MSN 25 55.2 (428) 5 25) 564 (£30) 62922 52124 4593 6042 69523 57827 503 @29 65328 56.0 @35
MAE (ViT) 110.6 432 (+70) 65.0 (+55) 722 @700 79665 57649 56.0 (kss) 488 (ken)  76.5 z6s) 63.8(£53) 60.8 sy  69.3 k6 59.7 62
HIMAE 172 65.1°% (x1.7) 65.1 +1.6) 80.2° x14) 70.1 200  56.2(£13) 685" (18 63.3" (x19) 83.1(x15 66.8 18 59.3 21 723 (x14) 58.5 (22

Table 2: Linear probing classification performance comparison against state-of-the-art wearable and
time-series foundation models. AUROC is reported in percent with 95% confidence intervals. The
best performance is bold, the second best model is underscored. * denotes p < 0.05, ** denotes
p < 0.01 from a two-sided z-test comparing HIMAE with the second-best model.

M Cardiovascular Conditions Abnormal Blood Labs Sleep Staging
odel #param (M)
Hyptn (lab) Hyptn (free-living) ~ PVC AIC Hemoglobin  Platelets  Sodium  Potassium  Wake Light Deep REM

PaPaGei-BL 57 57.3 (47 60.9 (4.1) 74.2 (64  59.2 (5.8 58.5 (£52) 59.9 49 59.0 (43 75555  56.8 (+49) 55.6 (k50) 539 (45 563 (5.7
PaPaGei-SRA 57 59.3 (35) 62.9 437 75256 6124 60527 61936 61033 T1S5(:4e 56842 5T.6(3n 559 34 58.3 (s
Swin-Transformer 110.6 583 (x62) 61.9 (+558) 742 72 582 61 59.5 (=8.0) 60.9 7. 60.0 56 76.568) 567 k54 54T @6 533 @15 544 53
Chronos 200.0 67.3 (17 59.9 (+29 65.7 3.1 58.2 (£34) 53.6 (+33) 60.9 (+27) 633 (+23)  63.5 (28 64.9 +27) 632 21 722 (+25 57.3 (+29)
HIMAE 1.2 65.1 x1.7) 65.3 (+1.6) 80.2 £14)  70.1°" 20 56.2(£13)  68.57 (x18) 63.3 (19 8317 x15 668 18 593 21 723 14 58522

Ablations: Ablation in Figure 3|and ] further highlights the contributions of hierarchical design and
skip connections in HHIMAE. Removing either component results in increased error, indicating that
both are crucial for effective representation learning. Nevertheless, even without these architectural
elements, HHIMAE variants remain competitive with larger transformer based models, underscoring
the robustness of the approach. More importantly, the full model exhibits improved generalization
across scaling axes (Appendix Section [F3), suggesting that the combination of hierarchy and skip
connections facilitates better transfer as data and compute grow.

5.2 CLASSIFICATION BENCHMARKING

Classification In Tables |l|and [2] HIMAE consistently secures the majority of wins, frequently
outperforming or matching models that are considerably larger. This is particularly striking given
that prior work has typically relied on heavy architectures to reach similar levels of performance,
highlighting HIMAE’s ability to capture a broad spectrum of physiological features with a compact
design. These outcomes emphasize the model’s robustness when applied to structured, temporally
dependent problems that demand sensitivity to subtle variations in wearable signals.

Taken together, these results position HIMAE as the most consistently strong performer across the
benchmark suite. In cases where HIMAE does not place first it is only ~1-2% behind the winning
model. Crucially, this level of performance is achieved with a substantially smaller model than
competing approaches, demonstrating a favorable tradeoff between efficiency and predictive power.
Rather than excelling only in isolated cases, HIMAE delivers broad, cross-domain competitiveness,
suggesting that compact models, when designed with the right inductive biases, can rival or even
surpass far larger architectures.

5.3 RESOLUTION SPECIFIC CLINICAL INTERPRETABILITY

The resolution hypothesis predicts that different health outcomes depend on distinct temporal gran-
ularities. To test this, we analyze performance across HIMAE layers, where each layer corresponds
to a progressively coarser resolution. Figure [5|reveals clear resolution-specific structure: individual
downstream tasks achieve maximal AUROC at different layers, highlighted by the red boundaries.

This layer-task alignment underscores two key insights. First, temporal resolution is not a nuisance
parameter but an axis of predictive structure: different outcomes are best represented at different
scales (we show that collapsing an encoder decoder still has concordant results showing that our
hierarchal model is not an artifact in Appendix Section|[F.4). Second, HIMAE naturally exposes this
heterogeneity, functioning as a discovery tool for identifying the most informative resolution per
task. This complements conventional interpretability methods (Amann et al., [2022} |Xu et al., 2023;
Lee et al.| [2025) by shifting the focus from which features drive predictions to which resolutions
matter. In doing so, HIMAE operationalizes the resolution hypothesis and provides insights to tasks
where the resolution needed is not entirely clear.
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HIMAE Layers Discover Resolution-Specific Structure Across Downstream Tasks
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Figure 5: HIMAE discovers task-specific structures for downstream tasks. AUROC across layers
shows that tasks rely on distinct temporal scales, highlighting HIMAE as a tool for discovering the
most informative resolution in clinical machine learning.

Clinical Interpretation

The resolution-specific structure discovered by HIMAE carries clinical implications that resonate
with existing literature or provide new clinical insights from a scientific discovery perspective. Car-
diovascular and sleep-staging outcomes achieve maximal performance in later layers, which aligns
with physiological understanding: cardiovascular (Zhou et al., 2021} Tang et al.| [2025) and sleep
dynamics (Patanaik et al.,|2018)), which evolve gradually over longer time horizons. Capturing these
slower patterns requires less temporal granularity, consistent with the notion that general trends, not
transient spikes, dominate predictive structure in chronic or cyclic physiological processes.

In contrast, tasks involving laboratory
measurements, are a more exploratory and
scientific discovery setting where there
isn’t much intuition on what resolution
should reveal the most predictive signal.
When looking at Figure[5] particularly the
blood-related biomarkers, it exhibit opti-
mal performance in earlier layers corre-
sponding to finer temporal scales. These
outcomes reflect inherently volatile phys-

iological processes, where shifts in mor- Model Params (/)  FLOPs()  Memory(}) On-device Lat. (})
1 1 1 HIMAE 1.2M 0.0647 gFLOPs 4.8 MB 0.99 ms
phOIOgy can Slgnal meanlngful phySIOlog- Efficient-Net B-1 7.8M 0.70 gFLOPs 31.1 MB 1.42 ms
ical change on lab measurements. Swin-Transformer ~ 110.6M ~ 11.89 gFLOPs ~ 423.8 MB 2.95 ms
MAE-1D 110.6M 15.94 gFLOPs 4413 MB 3.36 ms

5.4 CASE STUDIES

Case Study 1: On-Device Benchmark- Figure 6: Model efficiency and on-device inference:
ing A central novelty of HIMAE is that Sample on-device detections on Samsung Galaxy de-
it is, to our knowledge, the first SSL vice. Size, compute cost, memory footprint, and CPU
method compact enough to run entirely latency (ms per sample, batch size 2048) measured
on-watch, rather than on phone-class hard- over a 10s sequence at 100Hz.

ware. We evaluate on-device PVC detec-

tion on smartwatch-class CPUs sampled at 100 Hz (Figure [f). HIMAE is exceptionally lightweight
(1.2M parameters, 0.0647 gFLOPs, 4.8 MB) and achieves 0.99 ms latency per sample, equivalent
to processing ~1,010 samples/s or ~2.8 hours of signal per minute of wall time. By contrast it
shows massive performance gains against transformer baselines, Swin-Transformer (110M param-
eters, 11.9 gFLOPs, 423 MB) and a MAE-1D (ViT) (110M, 15.9 gFLOPs, 441 MB). HIMAE also
outperforms optimized models like Efficient-Net B1 (Tan & Lel 2020) providing context to the
latency and compactness of our model. HIMAE is thus ~3—4x more efficient compared to trans-
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formers while fitting fully on-watch (without quantization (Jacob et al.,2017))), enabling continuous,
private inference at the point of signal collection. This prototype is strictly for research and is not
deployed commercially.

Case Study 2: HIMAE is adaptable in few shot settings

A central challenge in the wearable Few Shot Learning Performance

domain is that labels are scarce across

tasks. Models that can adapt quickly PvC 09 Hypertension (Lab)
from generic pretraining to specific 0.0

detection tasks with limited supervi- ’ 08

sion are therefore essential. Figure 0.85

illustrates this setting: HIMAE pro- o 07

vides strong representations that can = 0-80 06

be adapted to diverse tasks such as 075 '

PVC detection or hypertension mon- 05

itoring with only a handful of labeled 0.70 palyiia = en
examples as reflected by the shape T 04 T
of the learning curves on the few- 0 256 512 10242048 ol 0 256 512 10242048 ol

shot learning experiments. By reduc-

igg the supervision required to reach  Figure 7: Few-shot adaptation. HIMAE adapts efficiently
high performance, HIMAE enables (o new wearable tasks under sparse labels indicated by curve

new tasks to be supported on-device  shape over transformer baselines.
without the prohibitive cost of large

curated datasets which help bolster its
practical utility.

6 DISCUSSION

Summary. HIMAE advances wearable self supervised methods along three dimensions: (i) its flex-
ible architecture is expressly designed for multi-resolution mapping, enabling seamless adaptation
across heterogeneous tasks, (ii) by aligning task-dependent resolutions with model representations,
it not only optimizes predictive performance but also offers a window into the temporal organization
of physiological biomarkers, and (iii) by design of the compactness, it achieves the first demonstra-
tion of true on-watch inference, running entirely within smartwatch-class constraints while matching
or surpassing performance on far larger models. These results position HIMAE as an efficient repre-
sentation learner but also as a framework for interrogating which temporal resolutions carry signal.

Resolution as a structural prior. Our findings validate the resolution hypothesis and suggest a shift
in how representation learning on wearables should be conceptualized. This reframing implies that
representation learning for physiological signals should expose, rather than collapse, scale-specific
embeddings. The layer-wise AUROC profiles in Figure [5]show that predictive performance peaks
at different levels of the hierarchy depending on the task, with fine-scale embeddings capturing
short-lived physiological events and coarse-scale embeddings capturing slower behavioral phenom-
ena. By revealing this heterogeneity, HIMAE provides empirical evidence that resolution-specific
representations are essential for wearable health modeling.

From “on-device” to “on-watch.”” HiMAE demonstrates that convolutional hierarchies can re-
duce model size by two orders of magnitude relative to transformer-based models, enabling the first
instance of true on-watch inference. This moves the deployment frontier from phone-class to watch-
class processors, where inference occurs exactly at the point of sensing. Beyond efficiency, this shift
has consequences for privacy (data never leave the device) and for clinical viability (continuous
real-time monitoring becomes feasible).

Limitations and Future Works While we focus on PPG, the principles underlying HIMAE gen-
eralize to multimodal settings. Physiological signals are inherently multi-scale across modalities
(e.g., ECG beats, accelerometer motion cycles, EEG rhythms), and resolution-aware architectures
could expose complementary temporal signatures across them. Another limitation of our work is we
don’t handle sequences beyond 10 second windows which could unlock another breadth of tasks.
Future works also warrants a clinical validation to the discoveries made by HIMAE which could be
of significant interest to the health community.
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LLM USAGE

A large language model (LLM) was used to assist in refining the phrasing and structure of the
manuscript. Its role was limited to improving clarity, coherence, and readability of the text based
on author-provided drafts. All scientific content, experimental design, and analysis were conceived,
implemented, and verified by the authors.
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Table 3: Overview of author contributions.

Author Concept Experiment Design Coding Analysis Writing Visualization Project Mgmt. Discussion Resources
Simon Lee v v v v v v v v

Cyrus Tanade v v v v v v
Hao Zhou v v v v

Juhyeon Lee v v v v
Megha Thurkal v v v
Minji Han v v v
Baiying Liu v v

Keum San Chun v v
Migyeok Gwak v v
Mehrab Bin Morshed v

Viswam Nathan v

Mahbubur Rahman v v
Li Zhu v

Sharanya Desai v v v v v

B ETHICS CONSIDERATIONS

B.1 DATA PRIVACY AND CONSENT

Wearable signals capture sensitive physiological and behavioral information (Erturk et al. 2025).
Our study relies on both publicly available and proprietary (company-owned) datasets that have
been carefully vetted. These datasets include transparent disclosure of data usage, explicit opt-in
mechanisms, and the option for participants to withdraw (Perez-Pozuelo et al.l [2021). Across the
seven datasets used in this study, we obtained written consent (via paper or digital waivers) that
clearly informed participants that their data may be used for commercial research purposes.

B.2 BIAS AND REPRESENTATIVENESS

Physiological signals vary across age, gender, ethnicity, health status, and socioeconomic context,
yet most existing datasets underrepresent key populations (FitzGerald & Hurst, [2017; [McCradden
et al., [2020; [Chen et al.l 2021). Such underrepresentation risks embedding biases into foundation
models, leading to inequitable performance in downstream applications. Mitigation requires deliber-
ate corpus curation, bias auditing, and systematic evaluation across diverse cohorts. In this study, we
sought to mitigate bias by incorporating a pre-training corpus drawn from a wide range of wearable
devices, collected across multiple regions of the world and over many years.

B.3 CLINICAL IMPLICATIONS

Wearable foundation models are not substitutes for medical judgment. Their predictions require
regulatory approval and clinical validation before integration into healthcare practice. Without safe-
guards, model misinterpretation could lead to misdiagnosis or inappropriate treatment. Development
should involve clinical collaborators, real-world evaluations, and explicit positioning of models as
decision-support rather than diagnostic systems. In our group, ongoing collaborations aim to eval-
uate where our foundation model performs well and how it may assist in forming clinical insights.
We emphasize that no definitive clinical conclusions should be drawn from this work.

B.4 ENVIRONMENTAL IMPACT

Training generative models entails substantial computational and environmental costs (Ligozat et al.,
2022; Bender et al.,2021;|Bouza et al.,[2023)). To minimize our footprint, we limited redundant runs,
and reused checkpoints to avoid unnecessary GPU usage. All experiments were conducted on data-
center GPUs with efficient cooling systems and renewable energy credits to reduce carbon intensity.
We emphasize that transparent reporting of compute usage and bounding resource allocation are
necessary steps toward sustainable machine learning research.
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C REPRODUCIBILITY STATEMENT

Table 4: HIMAE architecture components.

Encoder—Decoder

Layer Output Shape EncoderConvBlock

Input [B, 1, T] DecoderSkipBlock
EncoderConvBlock(1—16) [B, 16, T7/2] Layer

EncoderConvBlock(16—32) [B, 32, T/4] Convid (k — 5. 522, p=2) Layer
EncoderConvBlock(32—64) [B, 64, T/8] Bgtc\;Norm_ > 8=4,p= gnn\ftl‘raz:upo.seld (k= 5,522, p=2, op=1)
EncoderConvBlock(64—128)  [B, 128, T/16] GELU Comvld (e B oo, pe)
EncoderConvBlock(128—256) [B, 256, T/32] Convld (k = 5, s=1, p=2) gg%Norm
DecoderSkipBlock(256%128) [B, 128, T/]G] BatchNorm ’ ’ Convld (k = 5, s=1, p=2)
DecoderSkipBlock(128—64) [B, 64, T/8] Convid (k = 1, s=2) + BN g‘;‘:“i“l‘JN""“
DecoderSkipBlock(64—32) [B, 32, T/4] GELU ?

DecoderSkipBlock(32—16) [B, 16, T/2]

Final Deconv (16—1) [B, 1,T]

Tanh [B, 1,T]

Due to restrictions around data licensing and industry policies, we are unable to release the full
source code associated with HIMAE. However, To mitigate this limitation, we provide a simplified
code base in this https://github.com/Simonlee711/HIMAE as well as complete details of the model
architecture, layer configurations, and hyperparameters in Table ] This includes all encoder, de-
coder, and skip connection blocks, along with kernel sizes, strides, padding, activation functions,
and normalization layers. Together, these descriptions and codebases are sufficient to re-implement
the model faithfully in any modern deep learning framework (Paszke et al.l 2019 |/Abadi et al.,
2016; Bradbury et al.| 2018} [Hannun et al., [2023). In addition, we report all training settings (e.g.,
optimizer, learning rate schedule, and batch size) in the Appendix Section [E]to further support repro-
ducibility. Our goal is to ensure that, while the exact implementation cannot be shared, independent
researchers can replicate the methodology and validate the findings presented in this work.

C.1 TEMPORAL RESOLUTION AS AN EXPLICIT SCALE AXIS

HiMAE’s encoder implements a structured mapping from depth to temporal scale. Each encoder
block halves the temporal resolution while increasing the span of input samples contributing to each
feature, yielding a hierarchy of representations indexed by effective temporal support. This makes
temporal resolution an explicit axis of representation, rather than an emergent byproduct of depth.

Concretely, the encoder is composed of b convolutional blocks, each reducing the sequence length
by a factor of two. As a result, the representation at depth b operates on a grid of resolution 7'/2°.
At the same time, each block aggregates information over an increasingly large window of the
input signal. Because kernel size is fixed across layers, the camulative temporal support of encoder
features grows exponentially with depth, scaling as

Ry, = ©(2"),

up to architecture-dependent constants. Thus, encoder depth simultaneously controls both the gran-
ularity at which the signal is represented and the temporal extent over which features are computed.

Table [3] instantiates this scale hierarchy for the HIMAE encoder. Shallow layers operate at high
temporal resolution with receptive fields spanning only a few tens of samples, capturing fine-scale
waveform morphology. Intermediate layers aggregate information over 10'~10? samples, corre-
sponding to sub-second temporal structure such as beat-to-beat variability. The deepest layers inte-
grate over several hundred samples, encoding longer-range physiological dynamics across multiple
cardiac cycles.

This explicit scale stratification is central to masked autoencoding on physiological signals. Because
masking removes contiguous temporal regions, successful reconstruction requires contextual infor-
mation at a scale comparable to the masked interval. Features whose receptive fields are too small
lack sufficient context, while features whose receptive fields are too large oversmooth across distinct
physiological events. HIMAE’s exponential scale ladder ensures that intermediate encoder depths
naturally align with the characteristic temporal extent of masked regions, concentrating learning
signal at those resolutions.
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Table 5: Temporal resolution and cumulative receptive field through the encoder. T' denotes the
input length in samples. R, is the receptive field after layer /.

Layer Kernel £ Stride s Output length Ry
Encl-convl 5 2 T/2 5

Encl-conv2 5 1 T/2 13
Enc2-convl 5 2 T/4 21

Enc2-conv2 5 1 T/4 37
Enc3-convl 5 2 T/8 53
Enc3-conv2 5 1 T/8 85
Enc4-convl 5 2 T/16 117
Enc4-conv2 5 1 T/16 181
Enc5-convl 5 2 T/32 245
Enc5-conv2 5 1 T/32 373

Viewed this way, encoder depth in HIMAE should not be interpreted as a measure of abstraction
alone, but as an index over temporal scales. This perspective explains why linear probes trained on
intermediate layers often outperform both shallower and deeper representations: they correspond to
resolutions at which physiological structure is most predictive.

D DATASETS

D.1 AQUISTION AND APPROVAL

All data analyzed in this study were collected under informed consent, with participants explic-
itly agreeing for their wearable-derived signals to be used in health-related research. The consent
language stated that data could be used for developing new health features and algorithms and for
inclusion in scientific publications. In particular, participants were informed that health and wellness
data such as steps, heart rate, sleep, and photoplethysmography (PPG) signals could contribute to
findings aimed at advancing general knowledge of health and science. No data used in this study
included personally identifying information such as names or email addresses. We attach a portion
of the protocols defined in our user data agreements below:

The use of these de-identified data for data usage was reviewed and classified as exempt. In addition,
because the supporting records constitute case histories and document exposure to devices, we com-
plied with the recordkeeping requirements in 21 CFR § 812.140(a)(3), including obtaining written
digital consent and dated information. Participants could withdraw at any time; such withdrawals
were documented in the case history, and data collected up to the point of withdrawal were retained
and used for the investigation in accordance with the consent and applicable regulations.

For downstream evaluations, we relied on a combination of institutional review board (IRB)-
approved datasets and publicly available resources. For instance, the PVC detection task used paired
PPG and ECG recordings to derive annotations of premature ventricular contractions, with ECG-
based labels verified both algorithmically and manually. The hypertension classification tasks were
drawn from the My Heart Lab Study collected in a lab Setting (ID NCT04314947) and My BP
Lab (Clinical Trials ID 19-27169) studies collected in a free-world settting, both of which collected
wrist-based PPG alongside reference blood pressure measurements under IRB-approved protocols.
Sleep staging was evaluated using the DREAMT dataset, which combines PPG with gold-standard
polysomnography annotations in individuals with and without diagnosed sleep disorders. Finally,
a range of abnormal lab test prediction tasks were derived from the Tulane University dataset (ID
20242033), linking PPG from Samsung devices with clinical laboratory values for biomarkers (More
details in Appendix Section D).

Across all studies, participants consented to data collection through mobile platforms that supported
eligibility screening and enrollment, provided full informed consent, and enabled seamless integra-
tion of Samsung devices for continuous signal acquisition. Where appropriate, participants also
reported medical histories or completed questionnaires through these platforms. All data were de-
identified and stored in accordance with the approved study protocols, ensuring compliance with
ethical and regulatory standards.
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This layered consent and governance framework ensures that the data underpinning our pretraining
and evaluation tasks are both ethically sourced and scientifically robust, supporting the broader goal
of advancing health monitoring through consumer wearables.

D.2 PRE-TRAINING DATASETS

Table 6: Demographic Characteristics of the Study Population. Distributions are shown by
biological sex, age group, racial identity, and BMI category (N = 47, 644).

Category Subgroup N % of total
Sex Male 36,990 77.6
Female 10,532 22.1
Another gender identity 122 0.3
Age 18-29 12,019 25.2
3049 27,207 57.2
50-64 7,067 14.8
65+ 1,351 2.8
Race White 31,029 65.2
Asian or Pacific Islander 7,630 16.0
Black or African American 3,414 7.2
American Indian or Alaskan Native 592 1.2
Another race 4,979 10.4
BMI Underweight (< 18.5) 823 1.7
Normal weight (18.5-24.9) 13,626 28.5
Overweight (25-29.9) 16,634 34.9
Obese I (30-34.9) 8,745 18.5
Obese II and III (> 35) 7,816 16.4

D.2.1 DEVICE DISTRIBUTION

The distribution of participants and data availability highlights both the diversity of collection de-
vices and the heterogeneity of study contributions (Figure[8)). At the device level, participation is
primarily sourced from Watch Active 2, Watch 3, Watch Active, each contributing a lot of par-
ticipants, while older models such as the Galaxy Gear S3 are represented by fewer users. This
heterogeneity in devices provide us with a realistic and diverse set of raw wearable signals that can
help us build generalizable foundation models. The presence of entries labeled as “NA” further
reflects the mixture of collection devices and the occasional incompleteness of metadata. We note
that the devices used in our study are provided by two distributors limiting its generalizability and
causing potential biases due to not having access to other consumer wearable devices.

D.2.2 PARTICIPANT COUNTS

In terms of study based segmentation, the dataset contains a handful of large-scale cohort studies,
leading to diverse representation (Figure[§). Efforts were made to ensure representation across stud-
ies of varying sizes. This underscores the necessity of leveraging the vast scale of high-volume
cohorts while simultaneously preserving the heterogeneity introduced by smaller studies, since both
dimensions are essential for building foundation models that truly capture the variability and com-
plexity of one-dimensional PPG signal modeling. Our data was collected across 4 countries (USA,
South Korea, Brazil, Bangladesh) and the demographics are highlighted in Table[6] Note that miss-
ing demographics were imputed via KNN based on average PPG segments which have shown to
recover these people specific attributes (Miller et al.| |2025; Maclsaac et al.|[2025; [Ferdinando et al.,
2019).

D.2.3 PRE-PROCESSING PIPELINE

We segment raw PPG signals into fixed-length 10 s windows and apply a lightweight quality-control
pipeline to remove motion artifacts and non-physiologic segments. Each window is first standard-
ized to remove scale and offset differences across devices and recording conditions. Windows with
extreme amplitude fluctuations, indicative of motion bursts or sensor saturation, are identified using
a simple distributional check and either trimmed to remove outliers or discarded if the signal remains
unstable. This step prioritizes precision over recall to ensure high-quality pretraining data.
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Figure 8: Segment Count by Study. This bar chart shows the number of data segments collected
for each study, with the y-axis on a logarithmic scale to account for the large differences in segment
counts.

For windows that pass amplitude screening, we assess temporal regularity by measuring short-range
autocorrelation. Physiologically plausible PPG signals exhibit quasi-periodic structure; windows
with highly irregular or unstable periodicity are rejected, as these patterns typically arise from mo-
tion or sensor decoupling. We additionally enforce a minimum number of cycles to eliminate de-
generate or truncated traces.

Surviving windows are band-pass filtered to the cardiac frequency range to remove baseline drift
and high-frequency noise while preserving pulse morphology. Signal quality is then evaluated via
template matching against a canonical PPG waveform. We compute a per-window quality score
that jointly reflects the fraction of the signal that matches the template and the strength of that
match, penalizing cases where apparent agreement is driven by only a small portion of the window.
Windows that fail this final morphology check are excluded.

This filtering is applied at scale across the corpus, retaining only windows that are clean, periodic,
and morphologically consistent. The resulting pretraining set emphasizes physiologically meaning-
ful PPG signals across devices and sampling rates, substantially reducing motion artifacts without
relying on labels, heuristics tied to specific hardware, or subject-level metadata.

D.3 DOWNSTREAM EVALUATION DATA

We evaluate HIMAE across diverse downstream tasks to assess the generality of wearable PPG
representations. Rather than assuming a fixed mapping between PPG and outcomes, we exploit
HiMAE’s ability to learn hierarchical temporal features and adaptively resolve signal segments at
scales most informative for prediction. This design allows us to probe the representational value of
optical physiological signals across clinically and behaviorally relevant applications.

D.3.1 PVC DETECTION
Table 7: Stratified 80/20 Train/Test splits for PVC tasks (with per-task totals).

Task Split Negative Positive Total

train 369987 (91.8%) 32832 (8.2%) 402819
PVC Detection  test 69880 (89.7%) 8019 (10.3%) 77899
totals 439767 (91.4%) 40950 (8.6%) 480717

Premature Ventricular Contractions (PVCs) (Number Breakdowns in Table [7) are abnormal beats
arising in the ventricles (Cha et al.| 2012}, [Kaya & Pehlivan, [2015)). We use paired PPG-ECG data,
with ECG annotations generated using BeatLogic (Teplitzky et al., 2020) and manually verified.
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PPG inputs are 10s non-overlapping wrist segments, pre-processed with a Savitzky—Golay filter
(Luo et al.,20053), a 0.5-4.0 Hz bandpass, normalization to [—1, 1], and exclusion of segments with
motion artifacts or disruptions > 1 s. This task evaluates whether ubiquitous PPG can approximate
arrhythmia detection typically restricted to ECG.

D.3.2 HYPERTENSION CLASSIFICATION

Distribution of Blood Pressure (lab) PPG Segments across 135 Subjects
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Figure 9: Blood Pressure Distribution: The distribution of Blood Pressure Values (mmHG) across
the lab and free-living studies. We define hypertension as systolic over 130 and diastolic over 80 to
generate binary outcomes.

Hypertension classification (Number Breakdowns in Figure [9) relies on cuff-based references (Si-
monneau et al., 2004; |Giles et al., 20055 2009; |Simonneau et al.|[2009;2013;2019). Subjects within
+8 mmHg of the diagnostic cutoff are excluded to reduce label noise, with remaining individuals la-
beled hypertensive or normotensive. Each 10s PPG segment undergoes Savitzky—Golay smoothing,
0.5-4.0 Hz bandpass filtering, normalization to [—1, 1], and artifact removal. Unlike PVC detection,
which is event-based, this task leverages PPG morphology and temporal dynamics to reflect vas-
cular state. These evaluations contain both hypertension data collected in a naturalistic free world
environment and within a controlled lab environment for both the hypertensive and blood pressure
regression tasks.

D.3.3 SLEEP STAGING
Table 8: Stratified 80/20 Train/Test splits for Sleep Staging.

Task Split Wake Light Deep REM Total

train 44829 (23.9%) 115932 (61.8%) 6696 (3.6%) 20214 (10.8%) 187671
Sleep Staging (4-class) test 11298 (23.6%) 30153 (63.1%) 1416 (3.0%) 4881 (10.2%) 47748
totals 56127 (23.8%) 146085 (61.9%) 8112 (3.4%) 25095 (10.6%) 235419

Sleep staging (Number Breakdowns in Tables(8)) is evaluated on the DREAMT dataset (Wang et al.|
2024) hosted on PhysioNet (Goldberger et al.,|2000), which includes overnight wristband data with
simultaneous PSG. Annotations follow AASM standards into wake, REM, NREM1, NREM2, and
NREM3, excluding missing and preparation segments. PPG is bandpass filtered (0.5-12 Hz) (But-
terworth et al.l|1930), segmented into 10s windows, and normalized to zero mean and unit variance.
Performance is measured with five-fold subject-independent cross-validation. This task examines
whether PPG encodes temporal patterns sufficient for sleep stage classification. We note that sleep
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Figure 10: Abnormal Labs Distribution: The number of PPG segments for abnormal labs seper-
ated based on lab-specific cutoffs. We define an abnormal lab as falling above the 75th percentile of
values and a normal lab as falling within the 25th percentile.

staging has canonically been designed by leveraging the whole sleep cycle but we are assessing the
ability to monitor real time sleep staging from much shorter PPG segments.

D.3.4 ABNORMAL LAB TESTS

For abnormal lab test prediction, we use Samsung Galaxy Watch PPG collected at Tulane University
paired with clinical laboratory results. Each test is framed as a binary classification task: outcomes
are labeled negative if within the 25th percentile of lab values and the positive labels are anything
above the 75th percentile (Figure[I0). All other labels are excluded. Preprocessing matches other
tasks. Targets include A1C, hemoglobin, platelets, potassium, and sodium, each selected for estab-
lished clinical relevance. This task extends evaluation beyond cardiovascular and behavioral end-
points to systemic markers of metabolic, and hematologic health. We note that it is unclear whether
PPG can predict abnormal from healthy lab values based on the PPG alone. Despite this, Tulane
univeristy presents us with an opportunity to discover if PPG signal can provide digital signatures
making this an exploratory task in our benchmark.
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E BASELINES AND MODEL CONFIGURATION

Self Supervised Pre-trained methods have become a dominanat paradigm for health and wellness
to study a variety of applications (Wornow et al., |2023; Thieme et al., 2023} [He et al., 2024; |An
et al.,2025; Lin et al.| |2025). Foundation models for one-dimensional signals are predominantly re-
purposed from architectures designed for vision, with adaptations that reinterpret temporal structure
as a flattened analogue of spatial correlation. In this section we highlight our baseline models and
model configurations

E.1 BASELINES

MAE-1D We introduce a Masked Auto ecnoder that mimics the protocol of LSM (Narayanswamy
et al.| [2024). This model introduces a large-scale foundation model trained on multimodal wearable
sensor data but we adapt it to 1D PPG Signal. Specifically, it adopts a vision transformer archi-
tecture trained via masked autoencoding with random masking. In our work, we do not replicate
the full multimodal design; instead, we adapt and constrain the model to a unimodal setting for fair
comparison and due to lack of open source code.

Swin-Transformer (Liu et al.l [2021a) is a hierarchical Transformer that forms multi-scale repre-
sentations by restricting self-attention to non-overlapping windows and alternating partitions with
a shifted-window scheme, which enables cross-window communication while keeping computation
near-linear in sequence length. We use this baseline as this is a direct comparison and counterpart
to our proposed hierarchical HIMAE model. For wearable sensing, we adopt a 1D adaptation that
tokenizes temporal patches and applies windowed attention along time, capturing both fine-grained
waveform morphology and longer-range dependencies.

Masked Siamese Networks (MSN) (Assran et al., 2022) learn label-efficient representations by
combining masked signal modeling with Siamese-style contrastive objectives. Instead of relying on
class labels, MSN masks portions of the input and enforces consistency between augmented views.
Architecturally, it employs a Vision Transformer encoder shared across views, while leveraging
a predictor network to stabilize training. The key idea is to couple self-distillation with masked
reconstruction to reduce sample complexity.

DINO (Caron et al) [2021)) is a self-supervised framework that leverages knowledge distillation
without labels. Using a teacher-student setup, the student network is trained to match the output
distribution of the teacher under different data augmentations. Both networks are 1D-ViTs, and the
method induces cluster-like emergent properties in the learned embedding space, enabling strong
transfer performance without explicit contrastive pairs or handcrafted pretext tasks.

SimCLR (Chen et al., 2020b)) establishes contrastive learning as a competitive self-supervised
paradigm. The core idea is to maximize agreement between augmented views of the same sig-
nal in a latent space while pushing apart representations of different images. This is implemented
using a ResNET encoder (He et al.| [2015)), a projection head, and a contrastive loss (NT-Xent (Chen
et al.,[2020a)).

PaPaGei (Pillai et al.| |2024)) is a domain-specific foundation model designed for optical physiolog-
ical sensing, particularly photoplethysmography (PPG). It adapts ResNET-style CNN architectures
to learn robust, generalizable representations from large-scale optical physiological datasets. Pa-
PaGei releases both model weights and datasets to support reproducibility and broader adoption in
physiological signal analysis. In our work, we used their source code to benchmark their method by
pre-training on our volume of data to ensure fair comparison.

E.2 HYPERPARAMETERS FOR HIMAE AND BASELINES

To ensure a fair comparison across models, we aligned the training setup as closely as possible to
the original implementations while maintaining consistency in optimizer choice and scheduling. All
the methods trained from scratch (HIMAE, MAE-1D, Swin-Transformer, MSN, DINO, SimCLR)
were trained under identical optimization regimes, while PaPaGei follows its released open source
training protocol. Table [0]summarizes the key hyperparameters for all models.
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Table 9: Hyperparameter Configurations for Different Models

Configuration | HIMAE  MAE-ID Swin-Transformer MSN DINO SimCLR  PaPaGei
Training Steps 50000 15000
‘Warmup Steps —
Optimizer AdamW (Loshchilov & Hutter|(2017})

Opt. momentum [3y, 3] | [0.9,0.95] [0.9,0.95] [0.9.0.95 9,0.99 9,0.99]  [0.9,0.99] —
Base learning rate 0.001 0.005 0.005 0.001 0.004 0.001 0.0001
Batch size 2048 256
Weight decay 0.0001 —
Gradient clipping 1.0 1.0 1.0 3.0 3.0 3.0 —
Dropout 0.0 —
Learning rate schedule Linear Warmup & Cosine Decay —
Loss Function Mean Squared Error Cross Entropy Contrastive Loss
Data resolution 1 (signal) - 100 Hz (Sampling Rate) x 10 (seconds)

Augmentation Flip, Time-Warping, Noise

E.3 LAYER WISE ANALYSIS

Layer Wise Analysis

def layerwise_probe (model, dataloader, labels, device):

mmon

For all architectures we use the full sequence embedding across

the temporal dimension, without collapsing to a single summary token,

to ensure that downstream probes have access to resolution-specific
information.

mmwimn

model.to (device) .eval ()
hooks, acts = [], {}

# capture encoder layer outputs
for i, layer in enumerate (model.encoder_layers):
hooks.append(layer.register_forward_hook (lambda m, x, y, i=i: acts
.setdefault (i, y.detach().cpu())))

Xs = {i: [] for i in range (len (model.encoder_layers))}
ys = []
for xb in dataloader:
xb = xb.to(device)
with torch.no_grad() :
_ = model (xb.transpose(l, 2))
for i, a in acts.items():
Xs[i].append(a.flatten(l) .numpy()) # flatten embedding to
preserve time
ys.append(labels[: xb.size (0)])
labels = labels[xb.size (0) :]

results = {}
for i, feats in Xs.items():
X = np.concatenate (feats)
y = np.concatenate (ys)
X = StandardScaler () .fit_transform(X)
clf = LogisticRegression (max_iter=1000)

auc = cross_val_score(clf, X, y, cv=StratifiedKFold(5), scoring="
roc_auc") .mean ()
results[f"layer {i}"] = auc

for h in hooks: h.remove ()
return results

&

J

The layer-wise analysis examines how temporal resolution in the learned representations aligns with
performance on downstream tasks. For each encoder block, we extract and flatten the full sequence
embedding to preserve temporal detail, allowing probes to access features at different levels of
abstraction. By training logistic regression classifiers on these embeddings, we can assess which

layers best capture task-relevant temporal patterns.
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F ADDITIONAL RESULTS

F.1 MODEL CONFIGURATIONS ABLATIONS

We conducted a comprehensive ablation study of HHIMAE on a 100 Hz dataset comprising ten million
segments (roughly 30k hours). The experiments systematically varied architecture and hyperparam-
eters to understand their effect on reconstruction quality (Extrapolation task from our generative
benchmark in tables where it is not explicitly stated as previously done in (Narayanswamy et al.,
2024)), with multiple independent training runs averaged to reduce variance from stochastic initial-
ization and data sampling. Unless otherwise noted, all training employed AdamW with a learning
rate of 3 x 10~%, cosine decay scheduling, and a batch size of 512.

Architecture. We evaluated HiIMAE alongside CNN baselines across increasing network
depths, defined by the sequence of hidden channel dimensions [16, 32, 64], [16, 32,64, 128], and
[16, 32, 64,128,256]. Table [L0flists the parameter counts, showing a modest growth for HIMAE
compared to CNN baselines, with the skip-connected HIMAE exhibiting slightly higher capacity
than its no-skip variant.

Table 10: Model Parameters (in K or M)

Model HiMAE-tiny HiMAE-small HiMAE-Base
Depth [16,32,64] [16,32,64,128] [16,32,64,128,256]
CNN 26.2 K 108 K 437K
HiMAE-no skip 66.1 K 271 K 1.10M
HiMAE 753K 309 K 1.25M

The impact of network depth on mean absolute error (MAE) and mean squared error (MSE) is sum-
marized in Table[[1] Increasing depth consistently reduced both MAE and MSE for HIMAE, with
the deepest configuration yielding the lowest reconstruction error. Skip connections were critical, as
HiMAE consistently outperformed its no-skip variant across all depths.

Table 11: MAE and MSE for Different Network Depths

Model HiMAE-tiny HiMAE-small HiMAE-Base
Depth [16,32,64] [16,32,64,128] [16,32,64,128,256]
MAE| MSE| MAE| MSE| MAE| MSE|
CNN 0.405,2 0.234,5 0417,7 0.249,1 0.400,8  0.231,5
HiMAE-noskip 0.403,1 0.236,5 0.400,6 0.246,5 0.397,5 0.2339
HiMAE 0.400,8 0.230,9 0.389,2 0.223,2 0.3827 0.2210

Patch Size. We varied the spatial-temporal patch sizes over 1, 5, 10, and 20. The results in Table[I3]
indicate that 5 provided the best trade-off between local resolution and generative performance.
Smaller patches increased flexibility but slightly degraded performance due to reduced receptive
field per token, while overly large patches caused loss of fine-grained structure.

Table 13: Model Performance for Different Patch Sizes

Model 1 5 10 20
MAE| MSE| MAE|, MSE| MAE|, MSE| MAE| MSE|
CNN 04140 0239,1 0400,8 0231,5 04122 02449 04274 02613
HiMAE-noskip 0.406,9 0.239,8 0.397.6 0.233,9 0403,7 02462 04195 02629
HiMAE 0.389,9 02268 03827 02210 0386,1 02312 04039 02479

Convolution Kernel Size. Kernel size was varied over {1, 5, 10, 20}. Tableshows that 5 yielded
the lowest errors across all models, suggesting moderate receptive fields match the temporal and
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spatial scales of our data. Very small kernels restricted context aggregation, while very large kernels
oversmoothed latent features.

Table 14: Model Performance Across Convolution Kernel Sizes

Model 1 5 10 20
MAE|, MSE| MAE|, MSE|, MAE| MSE| MAE| MSE ]
CNN 04162 02413 0401,0 02309 04103 02418 04241 0.257.6
HiMAE-noskip 0.409,0 0.242,7 03959 0.233,1 04032 02440 04208 0.259,1
HiMAE 0.392,1 02283 03821 02206 03885 0231,6 04047 02485

Stride. We evaluated stride values of 2, 4, and 8 (Table E]) Smaller strides yielded the best
performance, particularly for HIMAE, by preserving high temporal resolution in early feature maps.
Performance degraded monotonically with stride increases.

Table 15: Model Performance Across Stride Values

2 4 8
Model
MAE| MSE| MAE| MSE| MAE| MSE|
CNN 0.4016 0.2312 04139 0.2445 0.431,8 0.267,8
HiMAE-noskip  0.3976 0.2334 0.409,8 0.247,1 0427,2 0.270,2
HiMAE 0.3829 0.2209 0.392,8 0.232,5 0.410,3 0.250.4

Masking Ratio. Finally, we explored the effect of varying the latent masking ratio in the masked
autoencoding objective for generative tasks, with ratios from 0.5 to 0.9. As shown in Table
interpolation and extrapolation both improved when increasing the ratio up to 0.8, after which per-
formance degraded for interpolation and collapsed for extrapolation.

Table 16: MAE and MSE for HIMAE Across Different Masking Ratios Evaluated on Generative
Tasks

Temporal Interpolation Temporal Extrapolation

HiMAE Masking Ratio

MAE | MSE | MAE | MSE |
0.5 0.397,2 0.229,2 0.407,7 0.251,9
0.6 0.388,9 0.222,3 0.397,5 0.229,4
0.7 0.384,8 0.220,7 0.396,3 0.227,8
0.8 0.3796 0.2183 0.3879 0.2217
0.9 0.381,8 0.221,9 0.288,1 0.221,6

Final Selection. These controlled experiments informed the final HIMAE configuration: the deepest
architecture [16, 32, 64, 128, 256] with skip connections, patch size 5, kernel size 5, stride 2, and a
masking ratio of 0.8, which jointly achieved the best trade-off between reconstruction fidelity and
parameter efficiency.

F.2 ECG PRE-TRAINING

HiIMAE attains the lowest masked-
reconstruction error on ECG (Table [T7),
indicating that its hierarchical masking and
reconstruction inductive biases capture re-

Table 17: Masked-reconstruction loss on ECG
masked auto encoding task.

construction capacity beyond PPG. MAE-1D Model MSE (V)
(ViT) is a close second, while the ablated HIMAE 0.148
HiMAE and CNN trail, reinforcing that the MAE-1D (ViT) 0.162
full HIMAE design transfers effectively to HiMAE (no skip) 0.184
the ECG domain. CNN 0.207
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Figure 11: Scaling Experiments on Generative Tasks: Evaluation on the three generative tasks.
HiMAE consistenly outperforms all model at our scale of data
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F.3 SCALING RESULTS FOR GENERATIVE TASKS

Scaling analysis. We evaluate HIMAE’s reconstruction error under participant, recording hour,
batch size, and model size scaling, following the regimes of Narayanswamy et al.|(2024); Xu et al.
(2025): random imputation, temporal interpolation, and temporal extrapolation. Across all settings
HiMAE follows clean scaling law trends (Kaplan et al.}2020) and maintains a margin over MAE-1D
(ViT) and CNN baselines.

The most pronounced effect is model size. At small capacities HIMAE achieves lower error than
much larger transformer baselines, highlighting the advantage of hierarchical inductive bias over
sheer parameter count. MAE-1D only begins to close the gap at orders of magnitude more parame-
ters. The transformer could surpass our HIMAE model when given a larger capacity but this again
highlights the effectiveness of the inductive bias that we are conveying. Participant, hour, and batch
size scaling follow canonical patterns. More participants and longer recordings steadily reduce er-
ror, with HIMAE continuing to improve where baselines saturate, especially on interpolation and
extrapolation.

F.4 HIERARCHAL CONCORDANCE

HIMAE layers vs. tasks
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Figure 12: HIMAE layer concordance across encoder depths. Heatmaps compare downstream
AUROC when probing HIMAE at 4 layers (top) versus 5 layers (bottom). Despite the removal of
an encoder—decoder stage, the resolution—task alignment remains highly concordant: tasks such as
PVC detection and hypertension consistently peak at similar layers, while sleep staging benefits from
coarser representations. Minor deviations appear in intermediate layers, but the overall hierarchy of
predictive resolutions is preserved, indicating robustness of the resolution hypothesis to architectural
depth.
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Layer concordance across depths. We further assess the stability of the resolution hypothesis by
comparing HIMAE trained with four versus five encoder—decoder stages (Figure[T2). The resulting
heatmaps reveal that the alignment between downstream tasks and temporal resolutions is largely
preserved across depths. Cardiovascular endpoints such as PVC detection and hypertension consis-
tently achieve their best performance at finer layers, while blood related labs benefits from coarser
layers. Although minor fluctuations appear in intermediate levels, the overall hierarchy of predictive
resolutions is concordant. This suggests that the resolution—task mapping uncovered by HIMAE is
not an artifact of architectural depth, but a robust property of the representations themselves.

F.5 TRANSFORMER LAYER INTERPRETABILITY

Transformer Layers Discover Resolution-Specific Structure Across Downstream Tasks
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Figure 13: Transformer based Layer Wise Analysis: Unlike HIMAE, MAE-1D exhibits non-
monotonic trends and lacks concordance with HIMAE’s internal representation hierarchy. We ob-
serve that performance typically peaks in intermediate and task-specific later layers, though this
pattern carries important nuance.

Figure [13| outline a deep conceptual contrast between HIMAE’s layer wise interpretability from
Figure [[4]and Appendix Section [F.4] and Transformer based encoders like MAE-1D (ViT) in how
their internal representations evolve and why their layerwise “probing” behaviors differ.

In a U-Net with convolution operators, each layer has a localized receptive field that gradually ex-
pands with depth. Convolution is a local operator, so early layers capture fine-grained spatial details
(edges, textures), mid layers combine local motifs into parts, and deeper layers encode semantic
abstractions or whole objects. Skip connections reintroduce lost resolution but don’t globalize in-
formation. This creates a hierarchical representation: the notion of “scale” is physically encoded in
the architecture, with clear separations between low-level and high-level representations. When you
probe features layer by layer, you observe clean transitions.

Transformers, on the other hand, start with global receptive fields from the very first layer because
self-attention mixes information across all positions in one step. Every token can, in principle, in-
teract with every other token regardless of spatial proximity. Depth therefore does not correspond to
expanding spatial scale but instead refines representations through repeated global mixing and spe-
cialization. Each layer develops different attention patterns and specialized circuits (like induction
heads or copy-suppression heads), rather than encoding progressively larger spatial features. Depth
adds precision and compression, not hierarchical abstraction.

This makes transformer probing results very different. Since there is no strict bottom-to-top feature
pyramid, probes do not show a monotonic increase in semantic abstraction. Instead, they show
nonmonotonic behavior: mid layers often peak in semantic information, and late layers compress
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features toward task-specific prediction spaces. Representations are distributed, overlapping, and
non-hierarchical—each layer contributes globally but in subtly different ways.

Mathematically, this difference arises because convolution enforces spatial locality and translation
equivariance via weight sharing and limited receptive fields, while self-attention defines a global
kernel A = softmax(QK "/ \/&) that mixes all spatial positions. Hence, the “hierarchy” in CNNs is
an emergent geometric property of the convolution operator, whereas in transformers the represen-
tational geometry is depth-wise iterative refinement within a globally connected graph.

F.6 T-SNE VISUALIZATION AND REPRESENTATION INTERPRETABILITY
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Figure 14: t-SNE Visualization and Representation Interpretability. We explore how the layer
wise TSNE evolve on the PVC Classification task to help us understand how the representations are
organized as they traverse the multiple encoders.

To characterize how HIMAE's hierarchical representations evolve across depth, we visualize t-SNE
projections of encoder embeddings from each layer on the PVC detection task in Figure The
corresponding AUROC scores (L1: 0.73, L2: 0.72, L3: 0.77, L4: 0.80, L5: 0.80; Figure Egllosely
mirror the progressive emergence of class separability observed across layers.

Representations from early layers (L1-L2) form diffuse clusters with limited separation between
normal and PVC segments, indicating that these layers predominantly encode local waveform mor-
phology. At intermediate depth (L3), distinct PVC clusters begin to emerge, coinciding with the first
substantial increase in AUROC and marking a transition toward rhythm-level abstraction. Deeper
layers (L4-L5) exhibit compact, well-separated clusters, consistent with representations that inte-
grate longer temporal context and capture higher-level cardiac dynamics relevant for arrhythmia
discrimination.

Together, these visualizations provide an interpretable view of HIMAE'’s hierarchical inductive
bias: representations progressively abstract temporal information from fine-grained morphology to
broader physiological context. The layer-wise evolution of t-SNE structure offers empirical sup-
port for the resolution hypothesis, suggesting that higher layers encode slower, more discriminative
temporal processes that ultimately drive clinical performance.
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G ON-DEVICE EXPERIMENTS

G.1 EXPERIMENTAL PROTOCOL

We evaluated the on-device performance of HIMAE using a Samsung Galaxy Watch 8 running Wear
OS. All experiments were performed natively on-device to capture realistic latency and through-
put characteristics under wearable hardware constraints. The model was deployed using PyTorch
Mobile with TorchScript conversion to minimize runtime overhead and ensure compatibility with
ARM-based computation. The device is powered by the Exynos W1000 chipset, featuring a 5-core
CPU (1x Cortex-A78, 3x Cortex-ASS5, 1x Cortex-MS55) fabricated on a 3nm GAA process, and
equipped with 2 GB of LPDDRS memory.

Inference was performed at a fixed batch size of 1, corresponding to a 10-second physiological signal
window sampled at 100 Hz. To ensure measurement stability, we used 20 warm-up runs followed by
100 timed inference passes. Latency was defined as the mean per-sample forward-pass time, with
additional reporting of median and 95th percentile values to capture tail latencies. Throughput was
defined as the total number of samples processed per second over a 10-second rolling interval.

For timing measurements, we used CUDA event synchronization on GPU and Python’s high-
resolution wall-clock timers on CPU. All computations were executed using float32 precision. The
benchmarking routines are provided in the accompanying code listings, which include throughput
and latency measurement functions.

As a point of reference, we additionally report datacenter-grade inference metrics obtained using
an NVIDIA T4 GPU to contextualize the mobile device performance. Although the T4 operates at
higher power, modern mobile GPUs (e.g., Qualcomm Adreno 750) demonstrate comparable infer-

ence efficiency per watt (Buber & Banul 2018}, [Wesolowski et al.} [2021)), validating the relevance of

on-device inference as a proxy for real-world deployment on consumer hardware.

Throughput Code

def measure_throughput (model, dummy_input, device, num_seconds=10) :
"""Measures inference throughput (samples/sec) with a fixed batch

size of N."""

model .eval ()

batch_size = N

dummy_input = dummy_input.to (device)
model.to (device)

with torch.no_grad() :
for _ in range (10):
_ = model (dummy_input)
if device.type == 'cuda':
torch.cuda.synchronize ()

num_inferences = 0
start_time = time.time ()
with torch.no_grad() :
while time.time () - start_time < num_seconds:
_ = model (dummy_input)
if device.type == 'cuda':

torch.cuda.synchronize ()
num_inferences += 1

total_time = time.time () - start_time
throughput = num_inferences * batch_size / total_time
return {"Throughput_samples_per_sec": throughput}
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Latency Code (Batch Size = 1)

def measure_inference_time_bsl (model, dummy_input, device):

a fixed batch size of 1."""
if dummy_input.shape[0] != 1:
raise ValueError (f"Input batch size must be 1 for this
function. Got {dummy_input.shape[0]}")

model.eval ()
dummy_input = dummy_input.to (device)
model.to (device)

with torch.no_grad() :
for _ in range (warmup_runs) :
_ = model (dummy_input)
if device.type == 'cuda':
torch.cuda.synchronize ()

timings = []
with torch.no_grad() :
for _ in range (num_runs) :
if device.type == 'cuda':
start_event = torch.cuda.Event (enable_timing=True)
end_event = torch.cuda.Event (enable_timing=True)
start_event.record()
_ = model (dummy_input)
end_event.record()
torch.cuda.synchronize ()

else:

start_time = time.time ()

_ = model (dummy_input)

end_time = time.time ()

elapsed_time_ms = (end_time - start_time) % 1000
timings.append(elapsed_time_ms)

mean_latency = np.mean (timings)
median_latency = np.median(timings)
std_latency = np.std(timings)
p95_latency = np.percentile(timings, 95)

return
"Mean_Latency_ms": mean_latency,
"Median_Latency_ms": median_latency,

"P95_Latency_ms": p95_latency,

"""Measures inference latency (mean, median, 95th percentile) with

elapsed_time_ms = start_event.elapsed_time (end_event)
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G.2 INFERENCE EFFICENCY

We benchmarked the inference
efficiency of our proposed HIMAE

. . Model Params FLOPs Memory
against the transformer baseline
(MAE-1D), measuring three aspects: ~ HIMAE 12M  0.0647 gFLOPS 4.8 MB
model footprint and computational I;Zfﬁmg;ﬁ-Ne;t 1?6816\/[M 101-78099;]1%1;55 43213; 181\134]?3
complexity in terms of parameters, Win-lranstormer : 078 :
prexity p MAE-1D 1106M  15.94 gFLOPS 4413 MB

memory, and FLOPs per 10-second
input window at 100 Hz (Table [I8);
latency, defined as mean per-sample
forward-pass time at batch size 1;
and throughput, defined as the max-

Table 18: HIMAE is lightweight and efficient: Model size
and compute cost comparison between HIMAE and MAE-
1D. FLOPs measured per forward pass on a 10s sequence at

imum number of samples processed 100Hz.

per second (Table [19).

Results Despite being more

than two orders of magni- Ty gy GPULat. GPUThr. CPULat. CPU Thr.

tude smaller in parameter count,

the HIMAE Consistently out- HiMAE 0.039 ms 25.8k/s 0.99 ms 1.2k/s

performs the transformer base-  Efficient-Net 0.082 ms 12.2k/s 1.42 ms 0.704k/s

line across all efficiency metrics Swin-Transformer  0.704 ms 1.42k/s 2.95 ms 0.456k/s
: MAE-1D 0.80 ms 1.24k/s 3.36 ms 0.298k/s

Between Efficient-Net (Tan &
Le, [2020), it remains marginally
better which is encouraging due
to the optimizations designed in
this model.

Model footprint: HiMAE re-

duces parameters from 110M to 0.31M (~ 355x fewer), FLOPs from 15.94G to 0.0647G (~ 246 x
fewer), and memory from 441.3MB to 3.6MB (~ 123x smaller). These reductions highlight that
computational savings scale with the compactness of the model, without loss of representational
capacity for the task.

Table 19: Inference Performance: Latency (ms per sample,
batch size 2048) and throughput (samples/sec) measured over
10 s windows.

Latency: HIMAE achieves substantially faster per-sample inference. On GPU, latency drops from
0.80ms to 0.039ms (~ 20x faster), while on CPU it falls from 3.93ms to 0.99ms (~ 4 x faster). The
reduction in latency follows directly from the smaller computational footprint, reflecting a consistent
efficiency advantage.

Throughput: These improvements translate into higher throughput across hardware. On GPU,
throughput increases from 1.24k to 25.8k samples/s (~ 21x higher), while CPU throughput rises
from 0.255k to 1.2k samples/s (~ 5x higher). These results confirm that computational gains extend
beyond memory and FLOPs, yielding end-to-end speedups at inference time.

In summary, HIMAE achieves a favorable tradeoff between compactness and efficiency, providing
lower FLOPs, smaller memory footprint, and faster inference despite its reduced model size. It
also outperforms Efficient-Net B1 which was specially designed and optimized for performance and
compactness giving a comparison and context to our models performance.
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H FREQUENTLY ASKED QUESTIONS

What are the main conclusions from this work? We demonstrate that convolutional architectures
benefit from inductive biases that remain advantageous for PPG signals. On our pre-training data,
our model consistently outperforms alternative baselines. Furthermore, scaling experiments across
model sizes reveal that brute-force scaling of generic architectures is possible, but less effective: our
model achieves stronger performance and scales more gracefully due to a better initialization and
inductive structure relative to other models. In addition to this inductive bias and compact design,
our contributions are two fold in the sense that our model demonstrates the first on-device model
which does not require phone level processors to run inference.

Is your pre-training dataset large enough? Our pre-training corpus was collected internally
and is of comparable scale to recent public benchmarks such as PaPaGei and Apple’s datasets.
In terms of magnitude, we position our dataset as PaPaGei (Pillai et al.,2025) < Ours <
Apple (Abbaspourazad et al.,|2023) < Google (Narayanswamy et al.,|2024). Thus, while not the
largest available, our dataset size is sufficiently large to validate the approach and lies within the
range of accepted practice for self supervised learning wearable models.

Why do you model at 10-second windows? We deliberately adopt 10s windows sampled at 100Hz
to balance physiological coverage with on-device feasibility. Many clinically actionable events, such
as arrhythmic beats or premature ventricular contractions, unfold on the order of seconds and require
rapid detection to enable continuous monitoring and real-time feedback. Shorter windows would
impair the model’s ability to capture meaningful temporal context, while much longer windows
would hinder low-latency inference on watch-class hardware. By constraining the receptive field to
10s, HIMAE preserves second-level resolution while remaining efficient enough to process signals
continuously under the hardware limits of edge devices. Additionally, 10-second window are a
standard protocol that are adopted in the clinical setting where ECG for example is collected and
interpreted at 10 second segments (Shuai et al., |[2016)).

What are the advantages of smaller models? From a research perspective, smaller models foster
inclusivity by reducing reliance on brute-force scaling of transformer-based architectures that only
industry-scale labs can realistically afford. From a deployment standpoint, compact models enable
on-device inference on constrained hardware such as wearables. This dual benefit—lower research
barriers and wider deployment potential—underscores the importance of investigating architectures
that remain competitive at modest scale.

How large is too large to deploy on a smart watch? In principle, models up to approximately
50MB can be stored and executed on modern smart watches or larger models can be quantized
(Jacob et al., [2017). In practice, however, latency and energy considerations suggest that models
exceeding roughly 10MB may already hinder real-time inference and limit commercial viability.
Additionally quantization does not do due dilligence to the original model and some level of the
model’s performance is lost. While smartphones relax these constraints, our contribution highlights
that the proposed model remains sufficiently compact to fit within the computational and storage
budgets of wearable devices such as watches, thereby supporting direct on-device deployment.

Can PPG predict abnormal laboratory results? We frame this as a binary classification task, test-
ing whether photoplethysmography signal encodes biomarkers that separate “normal” from “abnor-
mal” lab classes. Our investigation probes whether learned PPG representations capture biomarker
signatures correlated with out-of-range labs, using lightweight classifiers on frozen embeddings
with strict temporal alignment. Preliminary evidence suggests discriminative signal above chance,
but these findings are designed to be exploratory and not clinically actionable.
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